• Subscribe by RSS
  • Raid Recovery
  • Flash Data Recovery
  • Hitachi Data Recovery
  • Seagate data recovery
  • Samsung Data Recovery
  • WD Data Recovery
 
Data Recovery Salon
 
  • Recovery News & Tips
  • D.R Asia & Oceania
    • Data Recovery Afghanistan
    • Data Recovery Armenia
    • Data Recovery Australia
    • Data Recovery Azerbaijan
    • Data Recovery Bahrain
    • Data Recovery Bangladesh
    • Data Recovery Bhutan
    • Data Recovery Brunei
    • Data Recovery Burma
    • Data Recovery Cambodia
    • Data Recovery China
    • Data Recovery Fiji
    • Data Recovery French Polynesia
    • Data Recovery Georgia
    • Data Recovery Hong Kong
    • Data Recovery India
    • Data Recovery Indonesia
    • Data Recovery Iran
    • Data Recovery Iraq
    • Data Recovery Israel
    • Data Recovery Japan
    • Data Recovery Jordan
    • Data Recovery Kazakhstan
    • Data Recovery Kiribati
    • Data Recovery Kuwait
    • Data Recovery Kyrgyzstan
    • Data Recovery Laos
    • Data Recovery Lebanon
    • Data Recovery Malaysia
    • Data Recovery Maldives
    • Data Recovery Marshall Islands
    • Data Recovery Micronesia
    • Data Recovery Nauru
    • Data Recovery Nepal
    • Data Recovery New Zealand
    • Data Recovery North Korea
    • Data Recovery Oman
    • Data Recovery Pakistan
    • Data Recovery Philippines
    • Data Recovery Saudi Arabia
    • Data recovery Thailand
  • D.R Africa
    • Data Recovery Algeria
    • Data Recovery Angola
    • Data Recovery Benin
    • Data Recovery Botswana
    • Data Recovery Burundi
    • Data Recovery Cameroon
    • Data Recovery Burkina Faso
    • Data Recovery Cape Verde
    • Data Recovery Central African Republic
    • Data Recovery Chad
    • Data Recovery Comoros
    • Data Recovery Democratic Republic of the Congo
    • Data Recovery Djibouti
    • Data Recovery Egypt
    • Data Recovery Ethiopia
    • Data Recovery Gabon
    • Data Recovery Gambia
    • Data Recovery Ghana
    • Data Recovery Guinea
    • Data Recovery Ivory Coast
    • Data Recovery Kenya
    • Data Recovery Lesotho
    • Data Recovery Liberia
    • Data Recovery Malawi
    • Data Recovery Mali
    • Data Recovery Mauritania
    • Data Recovery Mauritius
    • Data Recovery Mayotte
    • Data Recovery Morocco
    • Data Recovery Mozambique
    • Data Recovery Namibia
    • Data Recovery Niger
    • Data Recovery Nigeria
    • Data Recovery South Africa
    • Data recovery Uganda
  • Data Recovery America
    • Data Recovery American Samoa
    • Data Recovery Anguilla
    • Data Recovery Antigua and Barbuda
    • Data Recovery Argentina
    • Data Recovery Aruba
    • Data Recovery Bahamas
    • Data Recovery Barbados
    • Data Recovery Belize
    • Data Recovery Bermuda
    • Data Recovery Bolivia
  • Data Recovery Europe
    • Data Recovery Germany
    • Data recovery France
    • Data Recovery Croatia
    • Data Recovery Denmark
    • Data Recovery Estonia
    • Data Recovery Czech Republic
    • Data Recovery Greece
    • Data Recovery Finland
    • Data Recovery Greenland
    • Data Recovery Falkland Islands
    • Data Recovery Hungary
    • Data Recovery Iceland
  • Donor Firmware
    • Seagate HDD Donor FW
    • WD HDD Donor FW
  • Links
    • How to advertise with Data Recovery Salon?

Frequency Modulation (FM)

Note: This has nothing whatever to do with FM radio, of course, except for a similarity in the concept of how the data is encoded.

The first common encoding system for recording digital data on magnetic media was frequency modulation, of course abbreviated FM. This is a simple scheme, where a one is recorded as two consecutive flux reversals, and a zero is recorded as a flux reversal followed by no flux reversal. This can also be thought of as follows: a flux reversal is made at the start of each bit to represent the clock, and then an additional reversal is added in the middle of each bit for a one, while the additional reversal is omitted for a zero.

This table shows the encoding pattern for FM (where I have designated “R” to represent a flux reversal and “N” to represent no flux reversal). The average number of flux reversals per bit on a random bit stream pattern is 1.5. The best case (all zeroes) would be 1, the worst case (all ones) would be 2:

encoding-pattern-for-fm

The name “frequency modulation” comes from the fact that the number of reversals is doubled for ones compared to that for zeros. This can be seen in the patterns that are created if you look at the encoding pattern of a stream of ones or zeros. A byte of zeroes would be encoded as “RNRNRNRNRNRNRNRN”, while a byte of all ones would be “RRRRRRRRRRRRRRRR”. As you can see, the ones have double the frequency of reversals compared to the zeros; hence frequency modulation (meaning, changing frequency based on data value).

fm-encoding-write-waveform-for-the-byte-10001111

FM encoding write waveform for the byte “10001111”.
Each bit cell is depicted as a blue rectangle with a pink line representing
the position where a reversal is placed, if necessary, in the middle of the cell.


The problem with FM is that it is very wasteful
: each bit requires two flux reversal positions, with a flux reversal being added for clocking every bit. Compared to more advanced encoding methods that try to reduce the number of clocking reversals, FM requires double (or more) the number of reversals for the same amount of data. This method was used on the earliest floppy disk drives, the immediate ancestors of those used in PCs. If you remember using “single density” floppy disks in the late 1970s or early 1980s, that designation commonly refers to magnetic storage using FM encoding. FM was actually made obsolete by MFM before the IBM PC was introduced, but it provides the basis for understanding MFM.

Modified Frequency Modulation (MFM)

A refinement of the FM encoding method is modified frequency modulation, or MFM. MFM improves on FM by reducing the number of flux reversals inserted just for the clock. Instead of inserting a clock reversal at the start of every bit, one is inserted only between consecutive zeros. When a 1 is involved there is already a reversal (in the middle of the bit) so additional clocking reversals are not needed. When a zero is preceded by a 1, we similarly know there was recently a reversal and another is not needed. Only long strings of zeros have to be “broken up” by adding clocking reversals.

This table shows the encoding pattern for MFM (where I have designated “R” to represent a flux reversal and “N” to represent no flux reversal). The average number of flux reversals per bit on a random bit stream pattern is 0.75. The best case (a repeating pattern of ones and zeros, “101010…”) would be 0.25, the worst case (all ones or all zeros) would be 1:

encoding-pattern-for-mfm

Since the average number of reversals per bit is half that of FM, the clock frequency of the encoding pattern can be doubled, allowing for approximately double the storage capacity of FM for the same areal density. The only cost is somewhat increased complexity in the encoding and decoding circuits, since the algorithm is a bit more complicated. However, this isn’t a big deal for controller designers, and is a small price to pay for doubling capacity.

fm-and-mfm-encoding-write-waveform-for-the-byte-10001111

FM and MFM encoding write waveform for the byte “10001111”.  As you can see, MFM encodes the same data in half as much space, by using half as many flux reversals per bit of data.

MFM encoding was used on the earliest hard disks, and also on floppy disks. Since the MFM method about doubles the capacity of floppy disks compared to earlier FM ones, these disks were called “double density”. In fact, MFM is still the standard that is used for floppy disks today. For hard disks it was replaced by the more efficient RLL methods. This did not happen for floppy disks, presumably because the need for more efficiency was not nearly so great, compared to the need for backward compatibility with existing media.

Data recovery Salon welcomes your comments and share with us your ideas, suggestions and experience. Data recovery salon is dedicated in sharing the most useful data recovery information with our users and only if you are good at data recovery or related knowledge, please kindly drop us an email and we will publish your article here. We need to make data recovery Salon to be the most professional and free data recovery E-book online.

 
 

World’s Top Data Recovery Hardware Tools


Easy to use at good price
Recover SATA, IDE, External HDDs, NVME SSDs, etc  Order Now here

POTABLE DEVICE & NVME SSD RECOVERY TOOL

Recover USB Device and NVME SSDs at high speed! Read Details here.

DFL-PCIE DATA RECOVERY RECHARGE

Best data recovery hardware tool to start a data recovery business, read details here

RECOVER SCRATCHED HDDS


Recover lost data from scratched hard drives, read details here.

SURFACE PRO. RECOVERY


Recover Dead Surface Pro. Laptops here

BEST HEAD REPLACEMENT TOOLS


The most cost-effective head replacement tools for Seagate, WD, Samsung, Hitachi, Toshiba, Fujitsu

 
 

Recents Posts

Apple SSD Data Recovery Adapter Pro.

April 30, 2025 3:03 AM / no comments

 

Strongly Recommended HDD ROM Read and Writing Tools

March 22, 2025 7:47 AM / no comments

 

Become a Reseller of Top-rated Data Recovery Tools in 2025

February 9, 2025 4:00 AM / no comments

 
 

Tags

Add new tag advanced data recovery training bad sectors Clean room Computer Forensics data backup data loss Data recoveries from flash and SSD Data recovery Data recovery engineer Data recovery equipment data recovery hardware Data Recovery Jobs Data Recovery Salon Data Recovery Services Data recovery software data recovery tips Data recovery tool Data Recovery Tools Data recovery training Data Security FAT Firmware free data recovery software hdd repair hdd repair tool hdd repair tools Hitachi Data Recovery how to fix logical data recovery NAND NTFS physical data recovery RAID Recovery SalvationDATA salvationdata review Samsung Data Recovery Seagate Seagate data recovery seagate hdd repair SSD SSD data recovery wd hdd repair WD SMR HDD Recovery Western Digital

Data Recovery Links

  • Head and Platter Swap Tools Factory
  • Top Data Recovery Tools
  • Data Recovery Australia
  • Data Recovery South Korea
  • Data Recovery France
  • HDD Repair Tools
  • Hitachi Global
  • Maxtor Hard Drives
  • PC Guide
  • Samsung Hard Drives
  • Seagate Technology
  • Storagere View
  • Toshiba Storage Device
  • Western Digital

Author

Sebean Hsiung
 
  • Raid Recovery
  • Flash Data Recovery
  • Hitachi Data Recovery
  • Seagate data recovery
  • Samsung Data Recovery
  • WD Data Recovery

Copyright © 2025 Data Recovery Salon. All rights reserved.